top of page
Introduction
Why choose this course?
On our BSc Biological Sciences (Human Biosciences) degree, you’ll examine the biology of humans at a systematic and whole-human organism level. Your first year will ground you in core topics such as cell biology, human physiology, anatomy, and basic science skills.
In your second year, you’ll study molecular biology. Specifically, the structure and function of prokaryotic and eukaryotic genomes. You’ll also examine integrated physiology. Your options include the biochemistry of cell function, genetics, and applied human nutrition.
We’ll encourage you to consider taking an industrial placement or doing a work experience module. Alternatively, you’ll be able to gain first-hand experience within a professional environment in your final year.
As part of your final year, you can showcase your knowledge and expertise in an area that interests you through a project. Your project will be conducted in a research setting or industrial laboratory.
Overview
Are you ready to learn how our bodies work? Do you want to make a difference to human health through innovative research and practice?
Our BSc Biological Sciences (Human Biosciences) degree will help you develop the skills you need in this new era of genomics. It’ll provide you with a solid foundation in key topics such as physiology, anatomy, biochemistry, cell biology, neuroscience, nutrition, and genomics.
Through a mix of academic and lab training, you’ll sharpen vital skills. Our labs are equipped with industry standard modern technology. And our reputation for outstanding research work stands us in good stead with the local Oxford biosciences industry and hospitals, especially when students come to apply for work placements and graduate jobs.
Our team of dedicated, research-active academics are committed to your success. As a graduate of our degree, you’ll possess an attractive set of skills for a career in the medical and health-allied industry, biological organisations, or university research and teaching.
Modules
Year 1
Compulsory modules
Cell Biology and Genetics
Cell biology is the study of how cells work and how they differentiate to form multicellular organisms.
This module is your introduction to cell function - you will study the different types of molecules within cells and build your knowledge about cellular organelles and their functions. You’ll explore the increasing levels of complexity and the diversity of cell types that have arisen through evolution.
On this module you’ll also look at genetics. What are genes and how do they work to bring about the traits that we observe in organisms? We will examine cell division in detail and look at how DNA is transcribed into RNA which translates into proteins that do most of the work in the cell.
The Practising Scientist
This module will help you build and apply the fundamental skills that underpin the practice of science. The key themes you’ll look at include:
hypothesis testing
the design of scientific investigations
mathematical topics and their application
principles and application of statistical methods
recording, reporting and presentation of science.
The timing of the introduction of these skills will help you to practise them in an incremental way on your other science modules, you will be taking alongside this one.
Human Structure and Function
Through this module you’ll build detailed insight into physiology - the way that the human body performs vital functions. Body function is dependent on the form or structure of the body and we’ll also study relevant areas of anatomy to gain a greater understanding.
Body functions are complex and individual organs don’t function in isolation, they work within organ systems. You’ll explore systemic physiology, which is the study of these organ systems. We’ll use examples such as the cardiovascular, respiratory and renal systems to illustrate this way of looking at and understanding the human body.
Organ systems also work in an integrated way, each affecting the others to try to maintain a physiological equilibrium. We will explore how the body maintains its balance, and also think about when things go wrong.
Optional modules
Introduction to Biochemistry A
This module is an introduction to the chemical principles that underpin cellular functions. You’ll study the chemical concepts that range from stoichiometry and reactions, chemical bonds and structures through to chemical equilibrium and chemical change, taking in the organic chemistry of cell macromolecules:
DNA
Proteins
Carbohydrates
Lipids
along the way. This will help you build crucial knowledge and skills for the field of biological sciences.
Introduction to Biochemistry B
Build your knowledge of chemical concepts. You’ll study energetics and cellular metabolism to biochemical change (enzyme kinetics and mechanisms) and you’ll consider cellular macromolecules, broadly looking at
bioenergetics
cellular metabolism
enzyme kinetics
protein structure and function.
To further develop and progress your knowledge and skills in Biochemistry and what you also learnt on the module Introduction to Biochemistry A.
Introduction to Nutrition
There are few things more fundamental to life than food and water.
In this module you’ll develop a basic understanding of the Science of Nutrition. You will study the concepts of human energy supply and energy expenditure, learning about the different nutrients. You’ll build your skills through training in how to assess dietary intake and nutritional adequacy, as well as body size and body composition. Helping to further your expertise in the field of nutrition.
Module leader Dr Vasiliki Iatridi says: “Studying Nutrition was one of the best decisions I've ever made: in the Introduction to Nutrition module it's my turn to convey that enthusiasm to our future Nutritionists and Health Care Professionals and provide them with the fundamentals to value the principles of Nutrition Science during their studies and later careers.”
Food Groups
You’ll look at foods based on their biological origins, biochemical composition, culinary use, nutritional importance and how they contribute to the varied human diet.
You’ll study the changes that occur to the biochemical components in staple foods as they are transformed to different food products, which is an important aspect of your lectures. The key groups are based around the basic food commodities, which are cereals and pulses, fruit and vegetables; meat and fish; dairy products; and tropical products such as cocoa, coffee, tea and spices. Building your knowledge of food groups so you gain a deep understanding of food production and the human diet.
Module Lead Dr Rianne Costello says “This module will provide you with the all-important foundation knowledge of the core food groups, from farm to fork and the importance of food security around the globe. This knowledge will help you become a more well-rounded Nutritionist or Nutrition Scientist.”
Year 2
Compulsory modules
Molecular Biology
A study of structure and function of prokaryotic and eukaryotic genomes at the molecular level with an overview on the experimental evidence that has contributed to current concepts, models and paradigms and practical experience of key molecular biology laboratory techniques. The module focuses on aspects of genetic engineering and environmental applications of modern molecular tools, with emphasis on phylogeny, ecology and evolution.
Career Development
The module aims to provide essential training in professional career management skills designed to assist you in actively planning and preparing for your future career. It will take you through a career development cycle starting with discovering your potential, exploring opportunities (jobs, post graduate study or training), plotting a way forward and making it happen.
Integrated Physiology
An examination of aspects of sleep physiology and the physiology and selected pathophysiology of the cardiovascular, respiratory, and renal systems in humans. In many textbooks, these systems are treated in relative isolation, but in the functioning body, their activities are integrated and interdependent. For example, blood pressure is effectively regulated by both the cardiovascular system and the kidneys, similarly pH is regulated by the lungs and the kidneys and sleep will affect respiration and vice versa. In this module we will consider these individual systems from an integrated view point. This will also be reflected in the approach to the description of relevant pathological conditions.
Optional modules
Biochemistry of Cell Function
The module considers the biochemistry of eukaryotic cells with an emphasis on mammalian tissues. Using several approaches, we will explore the biochemistry of eukaryotic cells, including the chemical nature of the compounds that are involved in cellular processes. Examples of diseases caused by failures in these processes reinforce understanding and provide relevance and application. The module emphasises relationships between events at the cellular level and at the systemic level, building a clear picture of the importance of biochemical events in human health and disease. In addition, some of the most relevant biomedical diagnostic techniques will be discussed.
Interrogating Genomes
Biological applications, whether in industry, academia or health care, are increasingly reliant on generating and analysing high-throughput global level (“-omic”) data. Analysing such high-throughput data requires a new breed of biologists with some level of competency in bioinformatics and computational biology. This module provides an introduction to computational thinking in the biological sciences. This involves learning programming to tailor bespoke solutions to biological problems and developing a capacity to approach biological problems from a computational perspective (computational thinking). Additionally students are introduced to a variety of –omic data types (RNA, DNA, Protein-level), public databases and publicly available software for bioinformatics applications. Bioinformatics provides key highly transferable skills that can be used in academia, or in other work case scenarios.
Human Nutrition and Metabolism
This module provides a detailed examination of sources of metabolic energy and other nutrients required by human metabolism, including their sources in food and the UK diet and the consequences of sub-optimal intake or excess. The students will gain a detailed understanding of nutritional biochemistry including the mechanisms for the integration of metabolism at the molecular, cellular and whole body levels. Nutrient requirements will be discussed with reference to UK Dietary Reference Values.
Applied Human Nutrition
This module is a detailed study of the features and problems of nutrition-related disease in the UK, Europe and other prosperous countries and communities. The module will explore the relationship between food, health and chronic disease. The module is composed of three broad sections: nutrigenomics (the role of nutrients on gene expression and the genetic susceptibility to disease stages); chronic diseases (e.g. obesity, diabetes mellitus, cancer, cardiovascular disease, metabolic syndrome); and specialist topics (vegetarianism, alcohol). Students participate in a laboratory-based class activity that explores the challenges of preparing nutritionally-adequate meals for people with special dietary requirements. This involves learning how to use specialist dietary analysis software (Nutritics), which is a key skill for any nutritionist. The practical session is also a useful opportunity to encourage students to take a food-based approach to nutrition.
Data Carpentry
This module introduces students on how to get biologically meaningful answers from data while providing a generic introduction to concepts of ‘big data’ and machine learning. This conceptual framework is delivered via a more practical approach where students learn how to program, analyse, manage and communicate data from diverse biological disciplines using the R language for statistical computing.
Interrogating Genomes
Cell Biology
This module focuses on eukaryotic cell structures and functions and highlights examples from animals, plants and fungi. The composition and functions of the cytoskeleton, cell membranes and cell components including chloroplasts, mitochondria and the nucleus will be discussed. In addition, cellular processes such as cell division and cell death will also be examined. Students will use well established methods such as fluorescent microscopy of living cells to experimentally investigate topics from lectures in lab classes.
Genetics
This module focuses on patterns of genetic inheritance at different scales from individuals to populations to evolutionary lineages. It will develop an understanding of Mendelian/transmission, quantitative, population, ecological and evolutionary genetics and an ability to analyse and interpret genetic data.
Year 3 (placement year)
Optional modules
Work placement
The Industrial Placement module lets you gain first-hand experience of applying theoretical and practical science within a professional environment, for example within an industrial biotechnology company or a laboratory. You will gain insight into the work of a professional scientific employer and develop both practical laboratory skills and the ability to self-assess. We will suggest employers but experience tells us that successful students are usually those who are pro-active in searching out their own placements. Many placements do come with a salary, but sadly some employers do not feel they are obliged to offer a salary, and that the expenses they incur by hosting and training you are sufficient outlay for them. This issue of salary will have implications for you and for your funding status. We will give you advice on this during the application process, but you should make sure you understand your situation fully by talking with the Student Finance department.
Year 4 (or year 3 if no placement)
Compulsory modules
Research Project
An individual project related to some aspect of the student's degree subject. The associated practical work may be conducted in a research or industrial laboratory or in the field, depending on the nature of the project.
Professional Skills & Techniques
This module focuses on the development of the professional skills, personalised to your career ambitions. You will select three ‘podules’ from a selection of podules, which draw upon our research expertise and links with external partners. Podules will cover a wide range topics relevant to your degree, such as advanced microscopy, protein biochemistry, species identification, geographic information systems, entrepreneurship or science communication. Each podule consists of an introductory lecture, plenty of hands-on experience, and a seminar in which you will learn more about the application of ‘your’ skill in different contexts.
Optional modules
Neuroscience
The core of the module will comprise lectures on a range of topics that are currently major research fields in neuroscience. At the beginning of the module there will be a review of neuronal structure and function, human neuroanatomy, and the development of the vertebrate nervous system. Core lectures will then focus on the development of the brain, and how neural systems give rise to perception, memory and ultimately consciousness. The module will allow students to develop and study in depth their own particular interests in specific areas of neuroscience research, and this will be assessed by a written project and a presentation.
Clinical Nutrition
This module provides a detailed study of nutrition theory and practice within a clinical setting. It takes a 'process' approach to clinical nutrition and outlines the general principles and processes that underlie most clinical cases. The module will explore human energy requirements during health, disease states and in clinical settings. It also investigates the management of nutrition-related diseases, and the uses of clinical dietary therapy and therapeutic diets. It also examines the underpinning supporting research evidence for clinical practice as appropriate. The focus will be on nutritional management of common diseases such as cardiovascular disease, type 2 diabetes, gastrointestinal disorders, renal/liver disease.
Genomic Medicine
The key areas of genomics, human genetics and genetic variation will be introduced. An understanding of genetics in disease and how genomic medicine can be utilised to elucidate disease mechanisms and biology will be developed. Basic genetics and genomics will be discussed to enable development of understanding the role of genetics in disease and how genomic information can be utilised to elucidate disease mechanisms and biology. Effects of gene mutations and gene polymorphisms in human health including an in-depth discussion of linkage and association studies.
Molecular Biology of Cancer
An exploration of the nature and causes of cancer with particular emphasis on the molecular biology of underlying mechanisms. The role of oncogenes, tumour suppressor genes, and cell signalling is explored. The role played by other cellular processes such as the cell cycle, apoptosis, cell growth and division, and DNA repair in cancer development is also explored. The module is framed around the concepts of the ‘hallmarks of cancer’ and will also explore the emerging field of cancer genomics as well as cover the therapeutic options for tumour patients.
Advanced Cell Biology and Bio-imaging
This module is designed to give students an in-depth appreciation of currently topical areas in the cell biology of mammals, yeast and plants, and the techniques underpinning the associated research. Topics to be covered will include cell signalling, the endomembrane system, and the cell cycle. Control of these three aspects of cell biology is, ultimately, at the level of interacting proteins and these interactions will be explored. Advanced experimental bio-imaging is one of the most powerful experimental methods for investigation of cell biology and confocal light microscopy will be used in practicals to observe living cells of animals and plants and to measure the strength of protein interactions in different biological situations.
Pathophysiology
The module aims to explore at an advanced level the pathogenesis, pathology and pathophysiology of common cardio-pulmonary disease conditions including obstructive and restrictive lung disease, heart failure and obstructive sleep apnoea. Module content will link key physiological principles (including expiratory airflow limitation, acid-base balance, ventilation/perfusion matching and pulmonary hypoxic vasoconstriction) to understanding pathophysiological mechanisms. Students will be exposed to cutting-edge and controversial issues in the field through a combination of problem-based learning case study, student debates, hospital visits and guest lectures by medical and healthcare professionals within the field.
Advanced Genetics and Genomics
The module will specifically focus on the use of natural variation for the study of population history, selection inference, and analysing variation in complex traits; the use of comparative genomics and phylogenetics to understand evolutionary relationships and investigate gene and genome evolution; the role of microbiomes in human health and ecosystems and the study of gene function. Key techniques discussed include access and retrieval of data from public resources, population statistics, phylogenetics (including co-evolution between genomes), genome-wide association studies, gene annotation, transcriptome analysis, transcription factor binding prediction and characterisation of epigenetic modifications. Students will apply knowledge to devise a research programme addressing one such current challenge in biological and medical science.
Work Experience
The ‘Work Experience’ module is a supervised work-based learning experience. You will spend a minimum of 60 hours in a working environment that is relevant to your future career path. By learning how to reflect on your learning and professional development, and how to present your insights in a written essay and in a video, you will develop useful skills for your future job applications.
Independent Study in Life Sciences
A study (normally library-based) of a topic of the student's choosing that is relevant to the student's programme but not formally offered as part of the taught course. A learning contract is agreed between the student and a supervising member of staff in the semester prior to the one in which the study is to be undertaken, and this must be approved by the Subject Examination Committee. Only once the learning contract has been formally approved will the module be registered on the student's programme of study.
Entry Criteria
ENTRY REQUIRED DOCUMENTS
Home Office Share Code
For EU students only.
IF no Qualification
Please provide CV with at least 2 years of work experience, and employee reference letter.
ASSESSMENT METHODS
1. INTERNAL ENGLISH TEST if you don't have an English accredited certificate
2. Academic Interview
Entry requirements
Specific entry requirements
A Level: Including one A Level or a comparable Level 3 qualification in a science subject (e.g. Physical Education, Biology, Chemistry, Maths, Physics, Psychology).
If you do not have a background in science, we encourage you to consider our Life Sciences Foundation year..
Our standard entry requirement is three A-levels or equivalent qualifications. In some cases, courses have specific required subjects and additional GCSE requirements. In addition to A-levels, we accept a wide range of other qualifications including:
the Welsh Baccalaureate
the Access to Higher Education Diploma
a BTEC National Certificate, Diploma or Extended Diploma at a good standard and in a relevant subject
the International Baccalaureate Diploma
the European Baccalaureate Diploma
Scottish qualifications – five subjects in SCE with two at Higher level or one at Advanced Higher level, or three subjects in Scottish Highers or two at Advanced Higher level
a recognised foundation course
T-levels*.
* T-levels are a relatively new qualification but are already included in the UCAS tariff. We welcome prospective students who are taking this qualification to apply. For some programmes with specific required subjects, particular subject areas or occupational specialisms may be required.
English language requirements
If your first language is not English you will require a minimum academic IELTS score of 6.5 overall with 6.0 in all components.
OR
An equivalent English language qualification acceptable to the University.
If English is not your first language then you will need to show that your English language skills are at a high enough level to succeed in your studies.
The entry requirement for your course will be expressed as an IELTS level and refers to the IELTS Academic version of this test. We are now also accepting the IELTS Indicator test, you can find out more about the test on the IELTS Indication site. The University however does accept a wide range of additional English language qualifications, which can be found below.
The university’s English language requirements in IELTS levels are as follows:
Course IELTS level
All other undergraduate courses 6.0 overall with 6.0 in reading and writing, 5.5 in listening and speaking
Law, Architecture, Interior Architecture, English Literature (including combined honours), English Literature and Creative Writing 6.5 overall with 6.0 in reading and writing, 5.5 in listening and speaking
Health and Social Care courses 6.5 or 7.0 overall with 6.5 or 7.0 in all components (see individual entries for course details)
Nutrition BSc (Hons) 6.5 overall with a minimum of 6.0 in each component
Built Environment Foundation,
Computing Foundation,
Engineering Foundation 6.0 with 6.0 in reading and writing, 5.5 in listening and speaking
International Foundation Business and Technology,
International Foundation Arts, Humanities and Law 5.5 overall with 5.5 in all skills
International Foundation Diploma 5.0 overall with 5.0 in all skills
If you need a student visa you must take an IELTS for UKVI test.
International Foundation Diploma (Extended pathway) 4.5 overall with 4.5 in all skills
If you need a student visa you must take an IELTS for UKVI test.
Assessment
Throughout the course we focus on applying fundamental biology to real life issues. You will focus on applying your knowledge in practical settings, either in the lab or out in the field.
You have the opportunity to gain a wide range of skills. These include:
molecular techniques
bioinformatics
advanced light and electron microscopy
field-based methods for species and landscape assessment
cutting edge methodologies for the study of evolution and developmental biology.
Our teaching methods include:
lectures
practicals
tutorials
seminars
surgeries.
Assessment
Assessment is designed to shape and develop learning, not simply measure it.
Our assessment methods include:
essays
reviews
examinations
laboratory or field notebooks
scientific reports
posters
oral presentations.
You’ll reflect on your progress with assignment feedback together with your diaries.
Career Opportunities
This degree equips you with the skills you need to make a difference as a professional scientist and practitioner. Previous graduates have gone on to work in a variety of fields: teaching and research, biotechnology, drug development, medicine and health care professions (e.g. physician associate and midwifery).
Popular job roles include:
researcher
clinical trials coordinator
food technologist
teacher
lecturer
biotechnologist
lab technician
microbiologist
biomedical scientist.
Oxford provides many opportunities for our graduates. The city is surrounded by innovative bioscience companies and renowned research centres such as the Nuffield and Churchill hospitals.
Entry requirements
Wherever possible we make our conditional offers using the UCAS Tariff. The combination of A-level grades listed here would be just one way of achieving the UCAS Tariff points for this course.
Standard offer
UCAS Tariff Points: 104
A Level: BCC
IB Points: 29
BTEC: DMM
Contextual offer
UCAS Tariff Points: 88
A Level: CCD
IB Points: 27
BTEC: MMM
bottom of page